Three dimensional Analytical geometry

Let $O X, O Y$ \& $O Z$ be mutually perpendicular straight lines meeting at a point O. The extension of these lines $O X^{1}, O Y^{1}$ and $O Z^{1}$ divide the space at O into octants(eight). Here mutually perpendicular lines are called X, Y and Z co-ordinates axes and O is the origin. The point $P(x, y, z)$ lies in space where x, y and z are called x, y and z coordinates respectively.

where $\mathrm{NR}=\mathrm{x}$ coordinate, $\mathrm{MN}=\mathrm{y}$ coordinate and $\mathrm{PN}=\mathrm{z}$ coordinate

Distance between two points

The distance between two points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ is

$$
\text { dist } \mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

In particular the distance between the origin $O(0,0,0)$ and a point $P(x, y, z)$ is

$$
\mathrm{OP}=\sqrt{x^{2}+y^{2}+z^{2}}
$$

The internal and External section
Suppose $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ are two points in three dimensions.

$P\left(x_{1}, y_{1}, z_{1}\right)$
$A(x, y, z)$
$\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2,} \mathrm{z}_{2}\right)$
The point $A(x, y, z)$ that divides distance $P Q$ internally in the ratio $m_{1}: m_{2}$ is given by

$$
\mathrm{A}=\left[\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}, \frac{m_{1} z_{2}+m_{2} z_{1}}{m_{1}+m_{2}}\right]
$$

Similarly
$P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ are two points in three dimensions.

$$
\begin{array}{|l|l|}
\hline P\left(x_{1}, y_{1}, z_{1}\right) & \\
Q\left(x_{2}, y_{2}, z_{2}\right) & A(x, y, z)
\end{array}
$$

The point $A(x, y, z)$ that divides distance $P Q$ externally in the ratio $m_{1}: m_{2}$ is given by

$$
\mathrm{A}=\left[\frac{m_{1} x_{2}-m_{2} x_{1}}{m_{1}-m_{2}}, \frac{m_{1} y_{2}-m_{2} y_{1}}{m_{1}-m_{2}}, \frac{m_{1} z_{2}-m_{2} z_{1}}{m_{1}-m_{2}}\right]
$$

If $A(x, y, z)$ is the midpoint then the ratio is $1: 1$

$$
\mathrm{A}=\left[\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right]
$$

Problem

Find the distance between the points $P(1,2-1) \& Q(3,2,1)$
$\mathrm{PQ}=\sqrt{(3-1)^{2}+(2-2)^{2}+(1+1)^{2}}=\sqrt{2^{2}+2^{2}}=\sqrt{8}=2 \sqrt{2}$

Direction Cosines

Let $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be any point and $\mathrm{OP}=\mathrm{r}$. Let α, β, γ be the angle made by line OP with OX, OY \& OZ. Then α, β, γ are called the direction angles of the line OP. $\cos \alpha, \cos \beta, \cos \gamma$ are called the direction cosines (or dc's) of the line OP and are denoted by the symbols $\mathrm{I}, \mathrm{m}, \mathrm{n}$.

Result

By projecting OP on OY, PM is perpendicular to y axis and the $\angle P O M=\beta$ also $\mathrm{OM}=\mathrm{y}$

$$
\therefore \cos \beta=\frac{y}{r}
$$

Similarly, $\quad \cos \alpha=\frac{x}{r}$

$$
\cos \gamma=\frac{z}{r}
$$

(i.e) $I=\frac{x}{r}, m=\frac{y}{r}, n=\frac{z}{r}$

$$
\therefore r^{2}+m^{2}+n^{2}=\frac{x^{2}+y^{2}+z^{2}}{r^{2}}
$$

$\left(\because r=\sqrt{x^{2}+y^{2}+z^{2}} \Rightarrow\right.$ Distance from the origin $)$
$\therefore I^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=\frac{x^{2}+y^{2}+z^{2}}{x^{2}+y^{2}+z^{2}}=1$

$$
\mathrm{I}^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1
$$

(or) $\quad \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$.
Note :-
The direction cosines of the x axis are $(1,0,0)$

The direction cosines of the y axis are $(0,1,0)$
The direction cosines of the z axis are $(0,0,1)$

Direction ratios

Any quantities, which are proportional to the direction cosines of a line, are called direction ratios of that line. Direction ratios are denoted by a, b, c.

If $\mathrm{I}, \mathrm{m}, \mathrm{n}$ are direction cosines $\mathrm{an} \mathrm{a}, \mathrm{b}, \mathrm{c}$ are direction ratios then
$a \propto l, b \propto m, c \propto n$
(ie) $a=k l, b=k m, c=k n$
(ie) $\frac{a}{l}=\frac{b}{m}=\frac{c}{n}=k$ (Constant)
(or) $\frac{l}{a}=\frac{m}{b}=\frac{n}{c}=\frac{1}{k}$ (Constant)

To find direction cosines if direction ratios are given

If a, b, c are the direction ratios then direction cosines are

$$
\frac{l}{a}=\frac{1}{k} \Rightarrow \quad I=\frac{a}{k}
$$

similarly $\quad m=\frac{\boldsymbol{b}}{\boldsymbol{k}}$
$r^{2}+m^{2}+n^{2}=\frac{1}{k^{2}}\left(a^{2}+b^{2}+c^{2}\right)$
(ie) $1=\frac{1}{k^{2}}\left(a^{2}+b^{2}+c^{2}\right)$

$$
\Rightarrow k^{2}=a^{2}+b^{2}+c^{2}
$$

Taking square root on both sides

$$
\begin{aligned}
& \mathrm{K}=\sqrt{a^{2}+b^{2}+c^{2}} \\
& \therefore l=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, \quad m=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, \quad n=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}
\end{aligned}
$$

Problem

1. Find the direction cosines of the line joining the point $(2,3,6) \&$ the origin.

Solution

By the distance formula
$r=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{2^{2}+3^{2}+6^{2}}=\sqrt{4+9+36}=\sqrt{49}=7 \quad z$

Direction Cosines are

$$
\begin{aligned}
& \mathrm{I}=\cos \alpha=\frac{x}{r}=\frac{2}{7} \\
& \mathrm{~m}=\cos \beta=\frac{y}{r}=\frac{3}{7} \\
& \mathrm{n}=\cos \gamma=\frac{z}{r}=\frac{6}{7}
\end{aligned}
$$

2. Direction ratios of a line are $3,4,12$. Find direction cosines

Solution

Direction ratios are 3,4,12

$$
\text { (ie) } a=3, b=4, c=12
$$

Direction cosines are

$$
\begin{gathered}
I=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}=\frac{3}{\sqrt{3^{2}+4^{2}+12^{2}}}=\frac{3}{\sqrt{169}}=\frac{3}{13} \\
m=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}=\frac{4}{\sqrt{3^{2}+4^{2}+12^{2}}}=\frac{4}{\sqrt{169}}=\frac{4}{13} \\
n=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}=\frac{12}{\sqrt{3^{2}+4^{2}+12^{2}}}=\frac{12}{\sqrt{169}}=\frac{12}{13}
\end{gathered}
$$

Note

1) The direction ratios of the line joining the two points $A\left(x_{1}, y_{1}, z_{1}\right)$ \& $B\left(x_{2}, y_{2}, z_{2}\right)$ are $\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)$
2) The direction cosines of the line joining two points $A\left(x_{1}, y_{1}, z_{1}\right) \&$
$\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ are $\frac{x_{2}-x_{1}}{r}, \frac{y_{2}-y_{1}}{r}, \frac{z_{2}-z_{1}}{r}$
$r=$ distance between $A B$.
